skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hill, Vanessa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Using Gaia DR2, we trace the Anticenter Stream (ACS) in various stellar populations across the sky and find that it is kinematically and spatially decoupled from the Monoceros Ring. Using stars from lamost and segue, we show that the ACS is systematically more metal-poor than Monoceros by 0.1 dex with indications of a narrower metallicity spread. Furthermore, the ACS is predominantly populated of old stars ($$\sim 10\, \rm {Gyr}$$), whereas Monoceros has a pronounced tail of younger stars ($$6-10\, \rm {Gyr}$$) as revealed by their cumulative age distributions. Put together, all of this evidence support predictions from simulations of the interaction of the Sagittarius dwarf with the Milky Way, which argue that the Anticenter Stream (ACS) is the remains of a tidal tail of the Galaxy excited during Sgr’s first pericentric passage after it crossed the virial radius, whereas Monoceros consists of the composite stellar populations excited during the more extended phases of the interaction. Importantly, the ACS can be viewed as a stand-alone fossil of the chemical enrichment history of the Galactic disc. 
    more » « less